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EVALUATIONI!

This report describes an approach to texture discrimination based

on spatial gray-level co-occurrences and maximum likelihood classification.

This log-likelihood discriminator demonstrated its capability to discriminate

between two-dimensional random fields having identical second moment

properties where existing schemes based on autocorrelation and/or power

spectral density and also edge density/correlation techniques could

not. This effort has provided a promising contribution to accomplishing

the goals of technical planning objective R2C, Digital Image Exploitation

for Target Detection and Identification.
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I. Introduction:

An impurtant problem in image processing applications is the segmentation

of an image field into disjoint regions which may possess the same averae gray

level but differ in the spatial distribution of gray levels. These two character-

istics are generally referred to as tone and texture respectively, although more

precise definition of these terms has remained elusive. It has been emphasized

by Haralick [1], [2], among others, that a subtle relationship exists between

tone and texture which depends very much upon the resolution with which an image

is viewed. At both low and high resolution the dominant feature is that of tone,

while at intermediate resolutions texture is often the dominant feature. The

most widely accepted definition of texture at present [3]-[51 consists of a basic

local order or quasi-homogeneous pattern which is repeated in a "nearly periodic"

manner over some image region which is large relative to the size of the local

pattern. We accept this as a working definition in what follows although with

some qualification on the "nearly periodic" repetitiveness attribute.

A number of techniques for texture discrimination have been proposed and

have achieved considerable success, although generally under well-defined and

rather limited operating conditions. These techniques can be classified as

either structural or statistical in their approach. Our interest here will be

in a purely statistical approach. Structural approaches are described by

Zucker (6], and Lu and Fu [7], among others. Recent work by Haralick [8] pro-

vides a comprehensive survey of most existing statistical techniques which he

classifies into eight broad categories possessing some degree of overlap.

For example, consider Haralick's first three categories; those based on auto-

correlation functions, optical transforms, and digital transforms. In reality



these techniques are all based upon second-moment properties and can be

collectively classified as such. The major classifications of statistical approaches

to texture classification/discrimination are then, following Haralick, those

based upon: second-moment properties, edge density, spatial similarity, spatial

gray-level co-occurrence probabilities, gray-level run lengths, and finally

use of tvo-dimsnional (2-D) autoregressive modeling assumptions. As Haralick

correctly points out, the spatial similarity approach is restricted to binary

images while the 2-D autoregressive linear estimation approach is severely

limited in the classes of texture for which it is useful. In particular, the

2-D autoregressive process does not, except under pathological assumptions,

exhibit the local pattern replication attribute considered an essential in-

gredient of texture. As a result, the competing statistical approaches for

general application to texture discrimination are reduced to the four remain-

ing categories as enumerated above.

Many of the specific techniques in these remaining four categories are

*based upon heuristic or ad hoc arguments while a comparative few have been

based upon the rigorous application of statistical decision theory concepts

under specific stochastic modeling assumptions. A comparative study of

several of the more frequently used statistical approaches is provided by

Weszka, et al. [9). In particular, the efficacy of various features, drawn

from these four categories, was investigated in the context of terrain classif-

ication. While results of this nature are useful they provide little guidance

on how the relative performance is affected under various modeling assumptions.

It is difficult, for example, to extrapolate the results of these and similar

studies to applications beyond the specific data base for which performance

has been provided. Clearly, use of more general 2-D stochastic texture models

2

. . . .A



whose parameters can be easily related to texture properties would remedy

this situation.

Much of the work on texture discrimination has been guided by human visual

discrimination studies. Several researchers [101, [11] in this area have conclud-

ed, although with some qualification [12], that humans can effortlessly differ-

entiate texture regions which differ in second-order statistics but cannot

discriminate between regions which differ only in third and higher-order statistics.

This is supported by the degree of success achieved with texture discrimination

algorithms based upon second-order properties alone, such as second-moment

techniques utilizing autocorrelation functions or power spectral densities.

Nevertheless, for virtually all the existing techniques it is possible to

contrive counterexamples which, although effortlessly discriminated by human

observation, cannot be discriminated by algorithmic means.

In Fig. 1, for example, we illustrate realizations of two random fields which

are visually distinct yet possess identical autocorrelation functions and/or

power spectral densities. These fields cannot be distinguished by algorithmic

approaches based upon second-moment properties alone. Similarly, in Fig. 2,

we illustrate several realizations of random fields which possess the same

number of edges per unit distance and are such that the average gray-level run

length along any randomly chosen line segment is identical. Again these texture

regions are easily discriminated visually although algorithmic techniques based

on either edge density or gray-level run lengths alone cannot discriminate the

various texture regions. Finally, it is possible to contrive random fields

whose Joint probability density function at two points separated by a specified

distance d are identical, although this need not be true for all values of d.

t The parameters defining the 2-D random fields in Fig. 's 1 and 2 will
be described in a later section.



The implication here is that, unless the separation distance d is Judiciously

chosen, texture discrimination algorithms based on spatial gray-level co-occurr-

ence probabilities are incapable of distinguishing visually distinct texture

samples. Again this points out the need for texture discrimination approaches

based upon rigorous application of statistical decision theory concepts under

specific and flexibly parameterized stochastic modeling assumptions.

In the present paper we describe a class of 2-D random fields, of which

the samples in Fig.'s 1 and 2 are selected realizations, which we feel provides

a realistic and conveniently parameterized model of texture in images. This

class of random fields bear some relationship to the random mosaic models for

texture described by Schachter, et al. [13]. Based upon this stochastic model

we propose a new approach to texture discrimination which is an approximation

to the statistically optimum maximum likelihood classifier. This approach, for

reasons to be described, makes use of the spatial gray-level co-occurrence matrix

introduced by Haralick [1], (2]. However, unlike the Haralick approach, we do

not make use of heuristically defined features for extracting texture information

from the spatial gray-level co-occurrence matrix. Rather our approach is based

upon a maximum likelihood hypothesis test of the gray-level co-occurrence matrix.

This leada to a rather simple implementation as a 2-D digital filtering operation

on the original image. Results indicate a substantial performance improvement

over competing approaches.

After some preliminary comments on 2-D random fields in Section II, the con-

struction and properties of the stochastic texture model are described in Sections

III and IV respectively. The structure of the maximum likelihood texture dis-

criminator is provided in Section V while the approximate digital implementation

is described in Section VI. Typical results are illustrated in Section VII while

Section VIII provides a suary and conclusions



II. Preliminary Discussion:

We consider an image as a family of random variables {f (w), xAR 2 } , or

a random field, defined on some fixed but unspecified probability space (o,A,P).

For convenience we suppress the functional dependence upon the underlying prob-

ability space and consistently write f(x) for fx (W). The covariance function
t

of the random field then becomes

Rff(x,y) = E{f(x)f(y)) ; x,ycR , (1)

where E{.} represents the expectation operator. If a random field {f(x), x2 R }

possesses a covariance function invariant under all Euclidean motions it will

be called homogeneous and isotropic (cf. [14] for definitions). In this case

the covariance function of the field evaluated at two points can depend only

upon the Euclidean distance between these two points so that

E{f(x+u)f(x)1= Rff(HIl) , (2)
T

where u =(ulU 2 ) is an element of Rad I represents the ordinary Euclidean

norm defined in terms of an inner product <.,.> according to

"11112 = <U, u> = u2 + u( (3)

By construction, the 2-D random fields to be described here are of this

category. Furthermore, they have been explicitly constructed so that the

joint probability density function (p.d.f.) of the field evaluated at two

points likewise depends only upon the Euclidean distance between these points.

More specifically, define the random variables fl=f(x) and f2=f(x+u). The joint

p.d.f. associated with these two random variables, parameterized by the spatial-

coordinates, then satisfies

p{fl ~ 2~ u p{f Vf2; (4u)I1'l~2 __ = (4lf _ll,{)

We assume the field is of second order (i.e., variances exist) and possesses

zero mean.

I l i m iI II II I I



which is the 2-D concept of stationarity [15] or invariance which will be most

useful for our purposes.

The corresponding power spectral density function is given by

Sff(W) = Rff (IuII)exp{-j q1,u>}du, (5)

RT

where w = (iw 2 ) represents a 2-D spatial frequency vector and du is the

2
differential volume element in R . This expression can be evaluated up to

functional form with the aid of a theorem of Bochner [161 with the result

Sff( Q) = s(SI) = 2r f X Rff(X) J0 (AP)d , (6)

0
wee A 2 21/2

where 2 I=(+) represents radial frequency. Here J (-) denotes
12 0

the ordinary Bessel function of the first kind of order zero. The quantities

Sff(-) and Rff(-) are then related through a Hankel transform [17], [18].

An important aspect of the approach to texture discrimination described

here is the use of a stochastic texture model whose second-order statistics

are iwvariant under both translation and rotation. Various stochastic texture

models proposed previously do not possess this property. For example, much

use has been made of 2-D autoregressive models [191-[21] for texture, often

under a separability assumption in the two orthogonal spatial directions.

* These processes cannot possess second-order statistics invariant under all

rigid body motions. On the other hand, we feel strongly that a reasonable

*, texture model should possess this property. Texture should retain its ident-

ity regardless of the orientation or perspective in which it is presented.

Use of naturally occurring textures exhibiting obvious directional properties,

- such as those in the book by Brodatz [22], serves only to obscure this issue.

f6



Had many of these samples been presented in a different orientation would a

different texture category have resulted? We feel rather that these examples

should be more properly considered sample fields or realizations of a

random field as defined here. While particular realizations may well exhibit

directional characteristics, the ensemble properties, at least up to second-

order statistics, should be invariant under rigid body motions.

Another criticism of existing stochastic texture models, such as auto-

regressive processes, is the inability to account for the predominant and

pronounced edge structure present in real-world imagery. Often this edge

structure provides an important aspect of the. rather imprecise concept of

perceived texture. Finally, and most importantly, existing stochastic

texture models do not provide the basic repetition of a local order or pattern

generally considered [3], [41 an important ingredient of texture. The stochas-

tic texture models described in the next section remove many of these object-

ions. Furthermore, the mathematical tractability associated with these models

allows straightforward development of statistically optimum texture discrim-

ination algorithms.

IIL Construction of Random Field Models of Texture:

The class of random fields to be used as stochastic texture models can

be described as marked point processes [23] evolving according to a spatial

parameter. According to this model the plane is randomly partitioned into

a number of disjoint geometric regions by an appropriately defined field of

" ,random lines which form the boundaries of these regions. The density of

these random lines, or edges, is defined in terms of a rate parameter A.

Gray levels are then assigned within elementary regions to possess correl-

ation coefficient p with gray levels in contiguous regions. We describe

7
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several schemes for partitioning the plane into elementary geometrical

regions. Given a particular partitioning scheme, the random fields are

completely defined in terms of the two parameters A and p. The parameter

X represents the "edge business" associated with an image while p is indic-

ative, at least on an ensemble basis, of the "edge contrast". For p lerge

(in magnitude) and negative there is an abrupt almost black-to-white or

white-to-black transition across an edge boundary. If p>O, on the other hand,

the transition across an edge boundary is much more gradual. It is relative-

ly easy to define these parameters for wide classes of imagery data.

In the present section we describe the construction of this class of 2-D

random fields. Relevent second-order properties are discussed in the next

section. We begin with the case where the plane is partitioned into random

rectangular regions.

Reet4mutaA Pazt ontmh A fundamental role in the construction of this class

of processes will be played by the integer-valued random field {N(x),x>O}

which provides a 2-D generalization of a counting process [24]. In particular,

suppose the vector i is obtained from x according to i_,_ x where _ is the

unitary matrix

cosO sine

-sine cose

defined for some Oc[-ln,w]. This transformation results in a rotation of the

Cartesian coordinate axes (x ,x 2 ) by e radians as illustrated in Fig. 3.

Consider now the integer-valued random field defined by

N(x) - ( 1 ) + N2(i2) ; x> 0 (8)

t T
By the notation x > 0 we mean that X (x1 ,x2) is such that x 11,2

8
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where ec[-w,] is chosen according to some p.d.f. p(e) and (N (1), 1>01,

i1,2, are mutually independent 1-D counting processes. That is, Ni(Z)

represents the number of events which have occurred in the interval [0,z].

We will be particularly concerned with the case where {Ni(L), 1>0), i=1,2,

are renewal point processes defined in terms of their interarrival distribution.

The random field {N(x), x > 01 in (8) then assumes constant integer values

on non-overlapping rectangles whose sides are parallel to the transformed axes

(t I2 ) and whose locations are determined by the event times of the corres-

ponding point processes {N (1), 1>01, i=l,2 . Consider now the random field
i

{f(x), x > 0) which undergoes transitions at the boundaries of these elementary

rectangles. The gray level assumed throughout any elementry rectangle is zero-

mean Gaussian' with variance a2 and correlation coefficient p with the gray

levels in contiguous rectangles. More specifically, let Xi,j represent the

amplitude or gray level assumed by the random field after i transitions in

the 21 direction and j transitions in the R2 direction. The sequence {Xi J I

is assumed generated recursively according to

Xi=P Xi +P X, -12Xi +W iJl

where Ip1< l,and(Wi j ) is a 2-D sequence of independent and identically dis-

tributed (i.i.d.) zero-mean Gaussian variates with common variance w2 =C2 (l-p 2 ) 2 .w

The initial values X O j, XO, kt > 0 are jointly distributed zero-mean

Gaussian variates with cctmon variance a2 and covariance properties chosen

to result in stationary conditions. An alternative interpretation of the

sequence {x ii 1 is as the output of a separable 2-D recursive filter excited

by a white noise field. It is easily seen that

For definiteness we assume Gaussian statistics. This assumption is not

critical to the development which follows and is easily removed.

9



~k. +k^

E{X i=X2 Pkk, k 22 ; klk 2 _>0 (0)
i,j i+k1 ,(10)

Typical computer-generated realizatiom of the resulting random field are

illustrated in Fig. 4 for selected values of P when p(e) is uniform over [-ir,w]

a {Ni(t), 2>} , i=1,2,are Poisson with intensities XI=X2=. The displayed

images here and throughout this paper are square arrays consisting of 256

elements or samples on a side. In Fig. 4, A is measured in normalized units

of events per sample distance so that there are on average 256X transitions

along each of the orthogonal axes. Similarly in Fig. 5 we illustrate real-

izations of the resulting random field when the point processes {N (), >01,

i=l, , undergo jumps of unit height at equally spaced intervals L=1/A. The

starting positions Ci, i=1,2, will be assumed uniformly distributed over the

interval [0,1].

The preceding two examples are special cases of the situation where the

point processes {Ni(£), >01, i=1,2, are stationary renewal processes [25],[26]

with Ga-a distributed interarrival times. This class of random fields re-

presents a 2-D generalization of the class of 1-D processes described in [27].

In particular, we assume the common interarrival distribution of the tvo

mutually independent point processes {Ni(9), 1>0, i=1,2, possesses p.d.f.

V-1

f(x) x exp{-X/ (11)r(v)8v

where V=1,2,..., and =I/AV for fixed X>0. For example, if v-l we have the

exponential distribution

f(x) e e x  x>o , (12)

associated with the Poisson process, while in the limit V- we have

f(x) = 8(x-l/,) ; x>O , (13)

corresponding to the case of periodic partitions as illustrated in Fig. 5.

10
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In Fig. 6 we illustrate selected realizations of the resulting random

field for several values of v all with X=0.05 and p=0.O. Clearly the para-

meter v provides a measure of the degree of randomness or "homogeneity" of

the structure. In this sense, this model does provide the pattern replica-

2tion attribute. For small v the random field {f(x), xCR I appears as a

random rectangular mosaic. As v increases, individual realizations rapidly

approach a more periodic mosaic in appearance. The parameters A, p and v then

completely describe this class of 2-D random fields.

Although this class of 2-D random fields provides a useful model of tex-

ture in selected applications, the rectangular mosaic exhibited by individual

* realizations is not entirely consistent with edge structure in real-world imagery.

That is, we would expect the edge structure to exhibit a much more random edge

orientation. An alternative approach then is to randomly partition the plane

into more complex geometric regions. In what follows we describe one such

approach where the plane is partitioned into random polygonal regions. Other

approaches are described in (281, [29].

P0 on__ P____ _6: Consider the partition of the plane R2 by a field of

random sensed lines. More specifically, an arbitrary sensed line can be

described in terms of the 3-tuple (r,8,e). Here r represents the perpendic-

ular or radial distance to the line in question, B [-r] represents the

orientation of this radial vector, and finally C is a binary random variable

assuming values ±1 which specifies the sense or direction imparted to this

line segment. The pertinent geometry is illustrated in Fig. 7 for the case

4-1. By virtue of the direction imposed on this line segment the plane is

partitioned into two disjoint regions, R(right of line) and L(left of line)

such that RVL=R

Now consider the field of lines generated by the sequence {riei,ci}.

Here the sequence (ri represents the "event times" associated with a

i;



homogeneous Poisson process {N(r), r>O1 with intensity X events/unit distance

evolving according to the radial parameter r. The sequence {e i ) is i.i.d.

and uniform on [-?r,71] while 4 i) is also i.i.d. assuming the values ±1 with

equal probability.

The field of random lines so generated results in a partition of the plane

into disjoint polygonal regions. Gray levels are assigned as described in [30]

to result in correlation coefficient p with gray levels in contiguous regions.

Typical realizations of the resulting random field are illustrated in Fig. 8

for selected values of X =X/T and p. The quantity X represents the averagee e

edge density along any randomly chosen line segment. This random field is

again described in terms of the two parameters Xe, or equivalently X, and p.

This class of 2-D random fields can be extended to include more general point

processes {N(r), r>0} controlling the radial evolution; for example, station-

ary renewal processes with Gamma distributed interarrival times. Unfortunate-

ly, the analysis of the resulting processes becomes quite complicated and as

a result we will not pursue this generalization here.

IV. Second-Order Properties

We turn now to the second-order properties of the class of 2-D random

fields described in the preceding section. In the interests of brevity the

treatment will be condensed and will make extensive use of results reported

elsewhere.

ReetaguakV PaAtZOn6: As a first step in the development of the covariance

function, assume that the random orientation ec[-w,r] has been chosen and that
+t

k transitions have occurred between the two points x and x + u where we

assume for the moment u > 0. It follows from (10) that

t Similarly, in the case of rectangular partitions it is easily shown that
the average edge density along any randomly chosen line segment is X z4x/w.
We will consistently use the subscript e to indicate edge density al8 ng a
randomly chosen line segment to distinguish from the corresponding unsubscripted

rate parameter A generating the random partition.

t1 By this we mean that k-k +k where k , i1,2, represents the number of

transitions along each oi t~e orthognal axes which have now been rotated

by e radians. 12



E{f(x+u)f(x)Ie,k) = 02p k  ; k=0,1,2,... (14)

The conditioning upon k is easily removed according to

E{f(x+u)f(x)16} = E E{f(x+u)f(x)Ie,k} Pk eO(u) , (15)

k=0

where Pkls(u) is the probability of k transitions between x and x+u given that

0 is acting. We exploit the stationar- renewal properties of the point pro-

cesses {Ni (), £>0}, i=l,2, in writing this probability as a function only of

the displacement u. In particular, PkJO(u) can be evaluated according to

- k -(1 ; k7O,1,,., (16)
. J=O

where l (i) is the probability that [Ni (), L>} has undergone j transitions

in the interval ui =,2, which depends upon u (ul,u2 ) and 6 according to

U= UlCoS+u 2 sine, (17a)

and

u= u 2 cos-ulsine. (17b)

Substituting (14) and (16) into (15) we obtain

E{f(x+u)f(xlO)= 2  pk Y (1) (2) (

k=O J=O -jl

and by simple rearrangement of the double summation in this last expression

we find
Go 0 k-J (1) ~ J (2)

E{f(+u)f(x) le}=a2 I I pk qj l(U)p q ( 2)
J=O k=J

* =a2 m (ii)] n (2) (19)p = m~o %le(U).n p q eO(U 2).

Assuming a uniform distribution for e, it follows that the covariance function

becomes

-TriRff(x+u,x) = J E{f(x_)f(x) lO (20)
-I

21J
13|

4,|



with the integrand given by (19). While not immediately apparent, it is

easily shown that this last expression depends only upon j iIjI so that the

resulting random field is indeed homogeneous and isotropic.

While explicit evaluation of (20) is in general quite cumbersome, it

can be evaluated in special cases. For example, in the Poisson case V=l,

it can be shown [31) that

Rff(l_ l) =2a . J exp{-r5(l-p)Xlulcos(6-w//4) ,d6 (21)
0

while the corresponding power spectral density computed according to (6)

becomes

S 8(1-P)Ao F 1 12 . (22)
g2+2(1-p) 2X2 L 2+(l-p)2A2J

Typical covariance surfaces together with intensity plots of the corres-

ponding power spectral density in the case of periodic partitions (i.e. ,v)

are illustrated in Fig. 9. The autocorrelation functions are plotted as a

function of the normalized spatial variablet 1 ull/1 over the range 0<IuRI/9A<3,

while the power spectral density is plotted as a function of the normalized

spatial frequency variable f/27rX over the range 0<1/2lrX<5. Additional details

can be found in [32]. Explicit evaluation of these quantitites for the general

case of Gamma distributed interarrival times is provided in [29].

*1 Similarly, the conditional joint probability of f lf(x) and f 2=f(x+u)

given both the random angle 0 and the number of transitions k between x and

- x+u is easily shown to be given byt

1 f-2 kf f+f2 ;p{fl,f2 ;x, x+uiO,kl= exp - I 0 2 1 22 M;k>1'
- exp -f 6 (-f, ; kO . (23)

2o 1

t Here I = 1/X with A the common rate parameter of the two mutually independ-
ent point processes which provide rectangular partition of the plane.

ttIt is at this point that the Gaussian assumption is crucial.

S14



Note that this quantity is independent of x, xu and 0; we will make use of

this observation later.

The conditioning upon k in this case is easily removed according to

p{flf 2 ; x, ._2u!e}- X piflf 2; _ leu-,kpkle(U)
k-O

ki (flOf2)Pkle(_) (24)
k=O

where Pkt e(u) has been defined previously as the probability of k transitions

between x and x+u given that e is acting. We have used hk(fl,f ) in the

second expression of (24) in order to emphasize the functional independence

of the spatial parameters x and x+u and the rotation angle 0.

Again under the assumption of uniform distribution for 6, the Joint p.d.f.

can be evaluated as

p{f1  2 E, ~2E__= J p{flf ;j, x+OldB= I hk(flf 2)pk(IuI), (25)
2 27k=O

where A IW

= M Pkle(_)dO (26)

and we have made explicit use of the fact that the integral on the right-hand

side of this last expression depends only upon the Euclidean distance Haull.

It follows that (4) is indeed satisfied and hence the 2-D random field is

homogeneous and isotropic through all second-order statistics.

To complete the evaluation of the Joint p.d.f. p{f1 ,f2 ;11[u11} it remains

to provide explicit evaluation of pk(IluII) in (26). This has proven quite

cumbersome in general, although quite tractable in several important special

cases. For example, again in the case v=l corresponding to Poisson partitions,

it can be shown (29] that
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P 4l - 2u ll  ]k I f/ Cos k exp{-v,' Xllcose}d6-; k=O,l,.. , (27)

0

which does not seem capable of further simplification. At any rate, this

expression is easily evaluated by numerical integration. Substitution into

(25) then yields explicit evaluation of p{flf 2 ;11ul }. Actually, for eval-

uation and display purposes, it proves convenient to consider a normalized

version of this joint p.d.f. defined according 
tot

POIff2 H I 1 p{Oflaf 2, I I , (28)

which is plotted in Fig. 10 as a function of flf 2 for selected values of P

and the normalized displacement d'5Ae luJI. Here the point fl=f2=0 appears

in the center and the plots cover the range -3<f. <3, i=1,2. Note the high
1~

concentration of discrete probability mass along the diagonal fl=f2 for small

values of d'. This is a direct result of the high probability of x and x+u

falling in the same rectangular regions and thus resulting in identical values

for fl=f(x) and f2=f(x+u). This probability dimishes for increasing d. In-

deed,as indicated in Fig. 10, this "ridge line" along the diagonal has

virtually disappeared for dY8. The off-diagonal probability mass visible for

P =-0.9 is a direct result of the negative correlation while for p=0.5, as

expected, there is visible probability mass distributed along the main diagonal.

For p-0, of course, this distribution is circularly symmetric about the origin.

These observations are more apparent in Fig. 11 which illustrates intensity

plots of the logarithms of the corresponding p.d.f.'s in Fig. 10. Note, the

almost identical circularly symmetric distributions which result for large d'

independent of the value of p. This says, in particular, that if random

fields possessing different values of P are to be distinguished on the basis

The net effect of this normalization is that the fl,f2 axes can be considered
normalized to the standard deviation o.

16

i\za



of second-order probability distributions the normalized displacement d' must be

chosen Judiciously. Values of d' which are either too small or too large provide

little discrimination ability. Values of d' close to unity appear to offer

the maximum discrimination ability. We will have more to say on this point

later.

PO4gOnat Pa~tUZn6: The second-order properties of this 2-D random field

have been described in some detail in [301. Here it is shown that, under the

assumption of a Poisson line process generating the partitions, the auto-

correlation function is given by

R( u II)o~e I(XI.1)+2iPk II IIM)19R~ffC{u{ = e k kk(e{_l),
~k=l

where Ik(.) is the modified Bessel function of the first kind of order k.

Similarly, the corresponding power spectral density is evaluated according to

sff(Q) = l-2pcos#+p7 [(n/Ae)z+(lo /2 (30)

0

These quantities are illustrated in Fig. 12 for various values of p. One not-

able characteristic of this random field is that the power spectral density

behaves as (0/e /2 for small values of (Q/Xe), i.e., Sff(fl) has a singular-

ity at the origin except for p=-l. This high concentration of energy at low

spatial frequencies is a direct result of the construction procedure which

allows relatively large correlations between gray levels in regions relative-

ly far apart. We feel that this characteristic is typical of selected texture

processes and as a result it was purposely built into the construction proced-

ure.

Finally, following the procedure described previously in the case of

rectangular partitions, the Joint p.d.f. is easily shown to be given by (25)

with the sum extended over both positive and negative values of k and
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Pk'(1 1 11) = [ ll /2lkIexp-Xe 40 [X I (+lkl)2 ; k=O,+l,±2,.. (30)
X=0

In Fig. 13 we provide intensity plots of the logarithm of p0{flf 2 ;llll} as a

function of f, and f2 for selected values of p and d'X I 11ull. An inter-

esting observation to be drawn here is the persistence of the diagonal "ridge

line" with increasing values of d!. This is, of course, a dirict result of

the construction procedure which allows return to the same gray level at

distant spatial locations with relatively high probability.

COMment: The comments made previously in relationship to Fig.'s 1 and 2 can

now be explained in terms of the preceding properties of the 2-D random field

models of texture. For example, in the case of rectangular Poisson partitions

the autocorrelation function and/or power spectral density, computed according

to (21) and (22) respectively depend only upon the product (1-p)X . The

sample fields in Fig. 1 have been chosen to maintain a constant value for

this product and hence possess identical second-moment properties. Similar-

ly, for this random field the average edge density along any randomly chosen

line segment can be shown to be given by A =4X/w. The sample random fields~e

in Fig. 2 all possess identical values for A and hence cannot be distinguish-i; I  e

*I  ed on the basis of either edge density or average gray-level run lengths

alone. Finally, as we have observed in conjunction with Fig.'s 10 and 11,

it is possible for two visually distinct random fields to possess the same

joint p.d.f. for some, but clearly not all, displacement distances d. Again

this points out a potential problem associated with discrimination approaches

based upon spatial gray-level co-occurrence probabilities.
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V. Log-Likelihood Texture Discriminator:
)N

We suppose that each point of an image array {f i is known to be
i~j i J=l

associated with one of a finite number K of texture classes or hypotheses

labeled Hi i=0,1,...,K-l, respectively. Furthermore, the array {fiJ

ij i,J.=l

will be assunied to have been obtained by discrete homogeneous sampling of

2
corresponding sample functions {f(x), XeR ) of 2-D random fields as described

in preceding sections. Typical realizations are illustrated in Fig. 14 in

che case of the rectangular partition process. Here various texture samples

are provided in different corners of an image which are labeled as points on

a compass, i.e., NW indicates the northwest corner, E indicates the east, etc.

In the top row of Fig. 14, the parameter v is held fixed for each image while

p is varied. Similarly, in the bottom row p is held fixed for each image

while v is varied. In all cases the edge density is held fixed at X=0.50.

Additional examples have been provided previously in Fig.'s 1 and 2. Our

interest then will be in discriminating between the various texture regions

and accurately detecting the boundaries between these regions.

An optimum texture discriminator, which minimizes the classification error,

should clearly be based on a threshold test on the likelihood functional or

some monotonic function of it [33], [34]. More specifically, suppose a window

of size (2M+l)x(24+l) is constructed about each pixel position (ij). The

observations at pixel positions within the window centered at position (i,J)

will be denoted

Fi,J =f i-M<k<i+M,J-M<<J+M} ; i,J=1,2,...,N , (32)

where we assume M<<N and neglect the boundary effects. The likelihood

functional with the window centered on pixel position (ij) and assuming the
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k'th hypothesis acting is then defined according to

A{F } {Fij 3)

where p0 {.} is an appropriately defined p.d.f. independent of which hypothesis

is acting and serving merely to provide a convenient normalization. As the

window is scanned accross the image array {f )}N , each pixel position
i'j i, J=l

is assigned the value k(i,j) corresponding to the index which maximizes the

class-conditional likelihood functional in (33). That is, k(i,j) = k0 if

A kF U }~ max Ak{FiJ) (314)
k 0 i'J 0<k<K-i

In this way each point will be assigned to one of a predetermined collection

of texture classes on the basis of local gray level values in a way that

minimizes the classification error. Boundaries can be determined by edge

detection of the resulting array {k(i,J)JN

ij=l"

There are several difficulties with the approach described above. First,

in order to implement the likelihood functional in (33) we require explicit

knowledge of the joint p.d.f. of order (2M+l)x(2M+l) for the underlying 2-D

random field {f(x), xR 2}. It is very rare that this information would be

available. For the 2-D random fields described in the preceding sections

we have been able to determine the joint p.d.f. p{fl,f2 ; JuI} for two points

separated by the distance h ull; higher order p.d.f.'s are somewhat intractable.

Furthermore, even if these high-order p.d.f.'s were available any texture dis-

crimination approach based upon the likelihood functional would be so finely

tuned to the modeling assumptions that it may be of questionable utility in

a practical application. We might prefer a suboptimum although, hopefully,

more robust approach.

20
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A reas'rnrlle suboptimum approach would be to perform a data reduction

on the sequence (F i j ) of observations to result in measurements which are

core tractable L--, at the same time relatively robust. The reduced data

can then be used in a subsequent log-likelihood discriminator. There are

many candidates for the data reduction operation. We have found it useful

to make use of histograms of gray-level co-occurrences. More specifically,

suppose that the original image array {fi N is quantized to Q levels
i'j i, J=1

labeled 0,1,... ,Q-l. Haralick and his co-workers [1]-[2] have introduced

the concept of the gray-level co-occurrence matrix. This is a QxQ matrix

with (m,n) element p {m,n; d,8} defined as the number of times the gray

levels m and n occur separated by d pixels at an angle 8 within a window of

size (2M+l)x(2M+l) centered at pixel position (ij). Furthermore, since

the texture models under consideration are invariant under rotations we

utilize a version of the co-occurrence matrix which is an average over all

e and denote the result by P. (d). The proposed texture discriminator is

then implemented as a log-likelihood test on the sequence {P. (d)} for a

fixed value of d. A block diagram of the resulting log-likelihood dis-

criminator is illustrated in Fig. 15. The pixel position (i,j) is assigned

the value k(i,j)=k0 if

Lk {p (d)) max Lk{p ,j(d)} (35)
0 0<k<K-i

where p{ P. (d)IH

LkPi,j (d)} _In p0[Pi,j(d) I k=0,l,...,K-l , (36)

represents the class-conditional log-likelihood functional.

Haralick has advocated use of the gray-level co-occurrence matrix

differently than that described here. More specifically, he has proposed
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1i functionals or discriminants defined on the gray-level co-occurrence

matrix which are intended to discriminate among different texture regions.

While these quantities have been shown to be of value in selected applica-

tions they are based upon heuristics for the most part. Here the use of

P (d) in a maximum likelihood detector is more solidly based on statistical* ,J

decision theory concepts. The primary motivation for employing P ij(d) to

effect the data reduction in Fig. 15 is the analytica. simplicity which

results. The condicional p.d.f.'s p{P (d)IHk} , k=0,l,...,K-l are easily

evaluated in terms of the joint p.d.f. p{fl,f2 ;IIRII}as demonstrated below.

Use of second-order p.d.f.'s provides a logical extension of techniques

based upon either correlation properties or edge density. This choice has

also been influenced by the general inability of humans to discriminate

textures which differ only in higher order statistics.

In the implementation of the log-likelihood texture discriminator a

critical simplifying assumption is made concerning the construction of the

Pi,j(d) matrix. Specifically, we assume that each pair of points counted in

producing Pij(d) has its intensities assigned independently of every other

pair of points. Clearly this is not generally the case for the 2-D random

fields described in preceding sections. Nevertheless, justification to h

some extent follows from the assumed ergodic properties of the underlying

random fields. In particular, we assume that spatial averages over the

observation window approach ensemble averages asymptotically as the size of

the window increases. As a result, the empirical distributions constitut-

ing elements of P i(d) approximate the true probability distributions of

- corresponding spatial gray-level co-occurrence events. Hence, provided the

observation window is large enough, the matrix P (d) is indistinguishable
i ,j

from that which would have been obtained from a set of independent samples

of the same process.
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The description of the log-likelihood texture discriminator illustrated in Fig. 15

is then complete once explicit evaluation of the class-conditional log-likelihood

fuwnctinals L k iU' . } is provided. Under the independence assumption de-

:.cribed above, the evaluation of p{P. (d)IHk }  k=O,l,... ,K-l, is descrfbed

in, terms of the mutinomial distribution [15],

[ Pi ~p(m,n;d)PiJ m n d

PIP ,(d)IH k ) = "'Q-OI [ n(d;Hk(7
i'j k ~Q-1 + M

- --(P idJ (m,n;d)f! )m,n=O

m,n=O

where Q ,n (d;Hk) is the probability of observing gray levels m and n at a

particular pair of points separated by distance d under hypothesis H k, k=0,1,

...,K-1. For convenience we take the normalization functionalJp 0{P.,j(d)}

as ( PiJ (m,n;d)!

P pi~ij(d)} =m,nO(8

(P i'j (m,n;d)!)
m,n=0

It follows from (36) that the class-conditional log-likelihood functionals are g,ven

by Q-I Q-I

Lk(Pij(d)) = p 7 (m,n;d)tk (m,n;d) ; k=0,l,...,K-i , (39)
mO n=O

where

I £(m,n;d )  I n %,(d;Hk (4o)

This latter quantity is easily computed from the joint p.d.f. of the underly-

ing 2-D random field. Suppose that the {fk(x), xeR I represents the random

field associated with hypothesis class Hk, k0,l,.. . ,K-l, and possessing

Joint p.d.f. pk{fl'f2;11-al}. Then

Qm,n(dHk) = jEm+1 jEn+d
Qm' (HkIpk{ fl~f 2 ;dAL}dfl1df 2 , (41)

E E
m n

Strictly speaking this is not a p.d.f. but does provide a convenient normal-

ization of the class-conditional log-likelihood functionals.
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where E, £=0,i,... ,Q-l represents the lower boundaries of the quantization

bins associated with level Z, and &L represents the spatial sampling interval.

The likelihood functional defined by (39) has a simple interpretation as

an inner product operation. More specifically, let Lk(d) represent the QxQ

array with (m,n) element £ (m,n;d). Then (39) becomes
k

Lk{Pij(d)) = <Pi~j(d), L k(d)> ; k=,l,...,K-l , (42)

where we have made use of the inner product

<A, 8>= tr A8T  (43)

defined on the space of QxQ matrices. The precomputed elements of Lk (d) can

be stored in a table and accessed as required. Computation of the inner

product in (42) is relatively simple. The major computational burden is

associated with computation of the P. (d) matrix. In the next section we

describe a simple digital implementation of the log-likelihood discriminator

which does not require explicit computation of P (d). This approach is

based upon 2-D Weiner filtering concepts. The result is a computationally

efficient implementation as a 2-D recursive or infinite impulse response

(IID) digital filter. Furthermore, the recursive implementation leads to a

simple method of avoiding the block structure associated with the windowing

operation.

VI. Digital Filter Implementation of Log-Likelihood Discriminator:

* The log-likelihood functional described by (39) and the sequel requires

a summation over gray levels or intensities. This can be replaced by a spatial

summation and leads to a simple implementation as a 2-D digital filtering

operation. In particular, recall that Pi j(mn;d) is simply the number of

times that gray levels m and n occur at a pair of points separated by d

pixels within the window WJ' centered at pixel position (i,j). It follows
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that the class-conditional log-likelihood functional can be rewritten

as

L k [F i Z' k (f r,s' r~u,s~v ;) (4
(r,s)cW (u,v)eS(r,s;d) A W rs

,k=0,1,... K-l,

where S(r,s;d) is the set of all points which are distance d from pixel

position (r,s). The outer summation in (44) is over the pixel positions (r,s)

within the window W. centered at (i,j) while the inner summation is over the

set S(r,s;d)o WJ including only those points (u,v) within the window which

simultaneously stand in the specified spatial relationship to pixel position

(r,s). Note that this latter summation can be obtained by searching over a

circular neighborhood of radius of at most d units. We assume that appro-

priate bookkeeping has been employed to avoid double counting of pairs of

points in the specified spatial relationship. This is indicated by the prime

added to tae inner spatial summation in (44).

At this point, it is convenient to define the quantity

g r,s;d) f ,f r+us+v;d) ; k=0,l,...,K-l.

(u,v)eS(rs;d) A W ij (45)

We are justified in expressing gk(r,s;d) as a function only of spatial
N

coordinates (r,s) since once the sampled field {fiJ IJ= 1 has been observed

this quantity is readily evaluated through (40) and the sequel. This assumes,

of course, that boundary effects along the periphery of the window Wi j can

be neglected; otherwise gk(r,s;d) would likewise depend upon the spatial

index (ij). These boundary effects will be assumed negligible in what

follows. This is a reasonable assumption if d<<M (recall the window Wi~ j is

of size (2M+l)x(2M+)) which will generally be the case. It follows that

(44) becomes
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Lk{i,J;d} = X gk(r,s;d) ; k=O,l,...,K-l , (46)
(rs) W ,j

where we have found it convenient to suppress the functional dependence upon

the observations Fi' j and simply write Lk(i,j;d} for Lk{Fij;d}.

Consider now how the vlndow size might be expected to influence perform-

ance of the log-likelihood discriminator. Clearly a large window size is

desirable if the window covers an area of homogeneous texture, as this re-

duces the probability of classification error. As the window size is increas-

ed, however, it becomes more likely that the window will contain two or more

regions of different texture classes thereby increasing the classification

error. To arrive at a reasonable compromise between these conflicting factors

the window has been allowed to be of infinite extent tbut the sum in (46) is

replaced by a weighted simation. The weights can then be chosen to provide

diminishingly less weight to points the fuxther they are from pixel position

(i,J). More specifically, we generalize (46) to the form

Lk(i,j;d) - h(i-r,J-s)gk(rs;d) ; k=0,l,...,K-i , (47)
rs

with {h(r,s)} the weighting function. Note that (47) reduces to (46) under

the assumption

I h(r, s)
h r s 0 : elsewhere , (48)

Furthermore, observe from (47) that Lk{i,J;dl is simply the output of a 2-D

* digital filter with the sequence {gk (r,s;d) as input. The weighting sequence

{h(r,s)) is the 2-D impulse response cr point spread function of this filter.

Note that this Justifies our assumptions that boundary conditions are
negligible in computing gk(r,s;d) from (45).
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There are many heuristic arguments that can be developed for choosing

an impulse response sequence {h(r,s)1. We have found it useful to formulate

this choice as a 2-D Wiener filtering problem. More specifically, consider

the filter input sequence defined by (45) as a function of a continuous

spatial variable x. The quantity {gk(X;d), xR 2 ) is then a 2-D random

field for each k=0,l,...,K-, and parameterized by the distance d. Although

the exact nature of this field is rather difficult to describe precisely,

we will make some rather crude modeling assumptions which have led to some

useful results. In particular, we assume that gk(x;d) can be represented

as the sum of three separate components according to

2
gk(x;d) = t(x)+ i(x) +n(x) ; xcR (49)

Here t(x) represents a mean-value or signal component indicative of the true

texture class. This component is constant over homogeneous texture regions

and exhibits Jumps or discontinuities at the boundaries between different

textured regions. The component i(x) represents an interference component

the nature of which is similar to the texture within a region. This compon-

ent reflects the pixel-to-pixel variations in gk(x;d) due to residual texture

components. Finally, n(x) represents an unavoidable noise component repre-

senting background noise, spurious image detail, quantization noise, etc.

In what follows the signal component t(x) will be modeled in terms of a

polygonal partition process as described in Section III. The edge density Ate'

or equivalently Xt , will be chosen on the basis of.an assumed density for

texture boundaries while the correlation Pt=O will be chosen to reflect com-

plete independence of texture in contiguous regions. Note that this latter

assumption implies that the distance d has been chosen appropriately to

Jmaximize the discrimination ability; otherwise the signal process t(x)

t Again, by our subscripting convention Ate represents the edge density of the field

t(x) along a randomly chosen line segment.
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would be highly correlated in contiguous textured regions. The interference

process i(A), onthe other hand, will be modeled as a texture process, either

rectangular or polygonal, possessing much higher edge density and with para-

meters chosen to match the coarsest texture expected in the input image. In

a sense this represents a worst case choice as the coarsest (i.e., lowest

edge density) texture presents the most difficulty in separation from t(x)

by linear filtering. Finally, the noise field n(x) is assumed a white noise

field with power spectral density S () =a2"
IM n

It should be noted that the model specified by (49) is independent of

both k and d, whereas in reality we would not expect this to be the case.

Nevertheless this model has led to some useful and interesting results in

selected computer experiments, some of which are described in the next

section. The main Justification for these modeling assumptions is based upon

rather extensive empirical observations on typical realizations of {gk(X;d),xcR2 }.

Although the modeling is somewhat crude, it does provide some consideration

of the relationship between the size of regions of constant texture and the

coarseness of this texture in the design of the filtering operation. Spec-

ifically, there is an inherent tradeoff between the degree of smoothing of

point-to-point variations of gk(x;d) and the ability of the generalized log-

likelihood discriminator to distinguish small regions of homogeneous texture

from contiguous regions. The Wiener filtering problem then is to determine

the linear least mean-square estimate of t(x) from the noisy observations

represented by gk(X;d). The resulting 2-D Wiener filter possesses system

transfer function.

0~~ ~ (0 M S(a)(0
Stt (50

HO(O = tt(2) + Sii( +nn() (0
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where S tt(2) and S ii(a) are the power spectral densities of the true texture

component t(x) and the point-to-point interference component i(x) respectively.

As previously demonstrated, under our modeling assumptions, these quantities

depend only upon the radial frequency Q and hence the Wiener filter possesses

this symmetry property. The system transfer function in (56) can be rewritten

as
1HO(Q)= Si () (52)

1 + i- + n n-- I

S (Q) S (Q~)
tt tt

which suggests defining the parameters Yi and Y n as the ratio of interference

and noise powers to the power in the texture process respectively. These

parameters provide a measure of the degree of degradation by interference from

residual texture components and salt-and-pepper noise. More specifically,

we have

Y (53a)Yi t

while YnA 2/2wi On/o , (53b)

so that the Wiener filter transfer function H0 (S) is completely determined in

terms of the quantities yiyns iPi9Xt andt Pt' In any particular application

these can be estimated empirically or on the basis of a priori knowledge con-

cerning the texture classes to be discriminated.

The preceeding description of the optimum linear filtering operation is

for a continuous spatial domain; we have access only to sampled data so that
S!

a digital implementation is required. In particular, we seek a 2-D digital

filter with system transfer function H0 (Z1 ,Z2 ) whose frequency response 
-

approximates H0 (a). While there are many digital implementations available,

0
Actually pt=O in the work described here.

tt The freqYency response of the 2-D digital filter is simply H (zi z ) evaluated
for z =e i, i=1,2. We assume the spatial frequency variable wi is measured
in un ts of radius per sample distance.
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our approach has been to make use of a 2-D infinite impulse response (IIR)

digital filter whose point spread function exhibits four-quadrant symmetry.

The choice of an hIR filter was dictated by the computational economies which

result from the inherent recursive nature of the computations involved. Simil-

arly, the restriction to four-quadrant symmetry for {h(r,s)} follows from the

requirement that the log-likelihood discriminator not exhibit any directional

sensitivities.

The fIR filters will be assumed to possess rational system transfer functions

of the form M N. . Nb Ma a

Ho(zl3z 2 b zI i z 2 j/1+ aij z1z2 (54)i=0 J=b i=O j=O

i=jO0

In particular, the output sequence {Yijl in response to {xi'j) as input can

be obtained recursively according to

Ma Na Mb Nba + b x m n>O • (55)
Yman=  I ij M-i,n-j bij -jn

i=O J=O 1=O J=O

i=j#0

We will assume that the geometry is such that this corresponds to a stable

filter recursing from the upper left-hand corner. Observe that the result-

ing filter will have nonzero impulse response only in the lower right quadrant.

As mentioned previously, it is highly desirable that the digital filter

implementation of the log-likelihood discriminator exhibit four-quadrant

symmetry in its impulse response or point spread function. One method for

achieving a point spread function with this inherent symmetry is to allow

repeated application of the same filter recursing from each of the four corners.

If {h0(iJ)} represents the point spread function associated with a single

application of the filter specified by (54) then the composite filter possesses
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point spread function as indicated in Fig. 16. The corresponding system trans-

fer function of the composite filter is then

H(zl,Z 2 ) = z- 2- 1/2H 1(zlz) , (56)

where

H (Z1 9z )AH (zl1 z )+z H (zI ,z2 )+z2H0  lz 2  )+ Zz2H 0(z ,z2  (57

It follows that the frequency response of H(zl,z is identical to that of

Hl(Zl,Z2 ) up to an unimportant linear phase term. In choosing H1 (Zlz 2) to

provide an approximation to H (SI) for z.=eioi, i=1,2, we have restricted0 1

attention to the case where H0 (zlz 2) is a simple first-order section of the

form 1+b -( -1+ ) +b  z l 1 (_ )

H 0(z z 2)=A1 1 (58)
0 1'S2\ 1+a10(z 

1 +z 2)+a1z I1 z 2

This choice insures zero frequency response at the origin and symmetry of the

corresponding point spread function about a line at 450 to the axes, i.e.,

h0(iJ)=h (,i). Similar properties extend, of course, to the composite filter

represented by H(z1 ,Z2 ). A computer program has been written for determining

the four coefficients alO,al, b1 0,b1 1 and the gain A according to an itera-

tive gradient procedure to result in a frequency response for Hl(Zlz2) which

provides a least mean-square approximation to the desired response H0(). The

details of this program are described in [29].

In Table I we summarize the results of this iterative digital filter design

approach for selected values of yi.,Pi,.i,Pt, and At all with yn
= -lOdB. Here

we have found it convenient to classify the interference characteristics as

weak, moderate or strong depending upon the value of yi" The parameters chose

here are particularly relevant to some experimental results to be described in

the next section.
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Interference A p P A b bCharacteristic i i t Pt A aO all bo bll

Weak 0.16 0.0 0.'0125 0.0 0.8131 -0.9743 0.9524 0.2915 -0.9098

Moderate 0.16 0.0 0.0125 0.0 0.2032 -0.9493 0.9036 -0.0375 -0.1761

Strong 0.16 0.5 0.0125 0.0 0.4220 -0.9605 0.9220 -0.8796 0.8432

Table 1

Typical Filter Parameters for yn = -10dB

For the three cases described in Table 1, the corresponding power spectral

densities S () and S.(a) + Sn(S),together with the resulting Wiener filter

response HO (),are plotted in Fig. 17 as a function of the radial frequency

variable 9. Observe the lowpass behavior in all cases with the selectivity

increasing with increasing levels of interference. Finally, in Fig. 18 we

illustrate 3-D plots of the desired Wiener filters and the resulting digital

approximations. In all cases, the closest corner represents the point [-W,W]

while the farthest corner represents the point [r,r]. The left-hand column

shows the desired responses while the right-hand column illustrates the re-

* sponses exhibited by the digital approximations. Note that in all cases the

lowpass nature of the optimum filter has been preserved and a fair degree of

symmetry has been retained.

t Frequency axes for w , i=1,2, have been normalized to the range [-n,w] with
the endpoints corresonding to ± the folding frequency, i.e., half the
sampling rate.
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VII. Experimental Results:

Typical performance results for selected texture discriminators are

provided in Fig. 19. Here Fig. 19a illustrates the original image which

consists of realizations of three distinct rectangular partition processes

for various parameter choices. The NW and NE corners have X=0.16, p=0.0,

and X=0.32, p=0.5 respectively. These values were carefully chosen, accord-

ing to previous comments, to result in identical second-moment properties.

As a result these two fields cannot be discriminated on the basis of autocorrel-

ation functions and/or power spectral densities alone. The field in the S

corner has X=0.32 while p=0.0. Since it possesses the same edge density as

the field in the NE corner, these two textures cannot be discriminated on the

basis of edge density alone. Although somewhat coptrived, we feel that this

problem provides a real challange to texture discrimination algorithms.

Three log-likelihood discriminators were designed using the filter para-

meters corresponding to the three entries in Table 1. The choice X.=0.161

corresponds to the coarsest texture in Fig. 19a while Xt was chosen to approximate

the density of texture boundaries. Recall that the edge density in this case

is given by A teA t/ edges per pixel so that for this choice there would be on

average approximately one texture transition along the boundary of 256x256 image.

This approximates the situation illustrated in Fig. 19a.

In Fig. 19b we illustrate the performancetof the log-likelihood texture

discriminator for the case of moderate interference, i.e., the middle entry

in Table 1. The value of d used here was d-3. Ideally, this quantity should

be chosen such that dtl/A (recall A =A/w for the rectangular partitione a

process) to provide maximum discrimination ability. In situations, such as

that presented in Fig. 19a, where there are more than one value of edge density

t In all experimental results reported in this section the images were
uniformly quantized to Q=64 levels.
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associated with the texture samples to be discriminated, a reasonable choice

is to choose d l/e where A represents the average edge density over alle e

texture classes. For the present case we have X = .306 and hence the choicee

d=3 provides the desired approximation. Studies have indicated that perform-

ance is not a sensitive function of d in the range 2<d<5,although the choice

d=3 appeared to be about optimum. As indicated by Fig. 19b, the log-likeli-

hood discriminator does an excellent job of discriminating the three texture

regions except in the vicinity of either texture or image boundaries. This

performance, however, can be improved as we demonstrate subsequently.

Included in Fig. 19 for comparison purposes we have indicated the perform-

ance of alternative more conventional texture discrimination schemes. In Fig.

19c we demonstrate the performance of a conventional correlation discriminator.

This algorithm implements a threshold test on a least-squares estimate of the correl-

ation of pixels separated by distance d. The optimum threshold has been chosen

empirically on the basis of histogram techniques. While this approach is useful

in discriminating the texture in the S corner from that in either the NW or NE

corner, it cannot discriminate between the NW and NE regions due to the fact they

possess identical second-moment properties. As a partial remedy to this situ-

ation we have devised a discriminant that employs both correlation and edge

density information. Since this discriminator appears sufficiently interesting

itself, we have provided details on its implementation in the Appendix. Using

this correlation/edge density discriminator some degree of success has been

achieved in discriminating between the NW and NE regions as illustrated by

the results in Fig. 19d. The results are, however, generally inferior to the

performance of the log-likelihood discriminator.

In order to assess the sensitivity of the performance of the log-likeli-

hood discriminator to our modeling assumptions, we have applied the three designs
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described in Table 1 to the original image in Fig. 19c. In all cases we have taken

d=3. The results are illustrated in Fig. 20 and provide some indication

of how performance depends upon the choice of filtering function. In Fig. 20b

we illustrate the result under the assumption of weak interference (yi=6dB,

P.=0.0). The boundaries between the three different texture regions, which

are actually straight lines, are irregular and small patches in each region

have been misclassified. In Fig. 20c we illustrate performance, as in Fig. 19b,

for moderate interference (Yi=OdB, Pi=O.O). The boundaries between regions

are smoother and the misclassified regions are smaller. Finally, in Fig. 20'd

we illustrate performance for strong interference (vi= 6dB,Pi=0.5). The bound-

aries are now much straighter and the misclassified patches have disappeared.

However, the point of intersection of the three boundaries has become ill-

defined as a result of the additional smoothing introduced to reduce the

interference. These results are useful in illustrating the tradeoffs in

choosing the strength of the interference.

VIII. Summary and Conclusions:

We have described a new approach to texture discrimination which appears

to offer considerable improvement over existing approaches under specific,

although realistic, stochastic modeling assumptions. While initial results

have been rather encouraging, much more work remains in establishing the

efficacy of this approach.

For example, we have described a Wiener filtering approach to the 2-D

digital filter implementation of the class-conditional generalized log-like-

lihood functionals. Clearly, other approaches to the digital filter design

problem are possible within the general structure of the texture discrim-

inant proposed here. Several alternative approaches are presently under

investigation.
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A more fundamental difficulty with this approach, however, is the re-

quirement for knowledge of the mode3 .orameters for each of the texture

classes known to be acting in any discrimination application. This know-

ledge is required in constructing the inputs gk(iJ;d),k=0,1,...,K-l, to

the digital filters which generate the class-conditional log-likelihood function-

als. We assumed this knowledge, for example, in the experiments described in

the preceding section. In practice it may be possible to obtain crude esti-

mates of these parameters either on the basis of a priori knowledge or derived

from the data itself. These estimates may be sufficiently accurate to pro-

vide useful discrimination performance. An alternative may be to use a

range of "prototype" stochastic texture models which span the range of textures

of interest. Use of these "prototype" texture models in constructing corres-

ponding class-conditional log-likelihood functionals may result in useful discrim-

ination ability. Both of these approaches are being pursued.

Finally, the proposed texture discriminant is intimately related to our

modeling assumptions. When applied to realizations of stochastic models for

which it was developed, the performance is excellent. Assessment of the true

value of this approach, however, will require relative performance evaluation

vis-9-vis existing approaches on real-world data. This relative evaluation

should be respect to both accuracy and computational cost.
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APPENDIX

CORRELATION/EDGE DENSITY DISCRIMINATOR

The correlation/edge density discriminator bases its decisions on maxi-

mum likelihood estimates p,A of the correlation of points separated by a distance d

and the density of edges respectively. A linear discriminator has been used to sepa-

rate the P,X plane into appropriate regions. This discriminator parallels

the log-likelihood discriminator to the extent that observations of pairs

of points within a window are assumed independent and furthermore the window-

ing operation is replaced by a weighted window implemented as a 2-D recursive

7 digital filter. Here, however, the likelihood functionals are maximized over

a continuum of values rather than a finite set of hypothesis.

The maximum likelihood estimate of the correlation will be formed under

the assumption that observations at pairs of points are zero mean jointly

Gaussian random variables. The p.d.f. of N independent observations of two

jointly Gaussian random variables conditioned upon their correlation and

variance is given by

p{(xiy.), i=l,Np,o}- 2(_p211/2]N
N (A-1)

Z (x.-2px.y.+y.)

exp2a 2 (l..n)

Here the N points under consideration would be the set of pairs of pixels

within a window (V and separated by a distance d while the random variables

x and y correspond to a pair of values taken on by each pair of pixels.

The values of P and a for which the above quantity is maximized are their

maximum likelihood estimates. It will prove more convenient to maximize the

logarithm of the above as given by
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N1(o,)=-N~n (2w 2 )- !' 1n (1p 2)
N~ 2 2

Z (xi-2px Y (A-2)
-2a2(1-p2)

Upon setting the partials of the above expression with respect to p and a to

zero and solving for p and a we obtain the estimates

*N
& (x2+y2)/2N (A-3a)il

and
N

p= i xiyi/N82  (A-3b)

As in the log-likelihood discriminator the summations above over a window were

replaced by a low pass filter.

The maximum likelihood estimate of the edge density will be made under the

assumption that the occurrence of edges along an arbitrarily placed line can

be described as event times of a Poisson process. Then the probability of

observing NO intervals of length d with no events and Ne intervals with one

or dore events under the assumption that the edge density is X is given

by [15] (N0+N e ) 0 N

P(N0 ,Ne IX) = No!N ! [exp(-,d)]No [l-exp(-Xd))N e  (A-h)
Ge

It will prove convenient to work with the logarithm of the above as

(N N+N e )IZ(NoNeIX) = Ln N0 N e + N (-Xd) + N tn[l-exp(-Xd)] (A-5)

ex N0IN 1 0e A5

Setting the derivative of the above with respect to A to zero and solving for

A yields

£n $0, (A-6)

where 80 = N /(N +N ) is the fraction of intervals with no events. In fact,
0 0 0Oe

the quantity used in the discriminator was not A but rather an estimate of 0
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formed by passing the output of a simple edge detector through the lowpass

filter used for the log-likelihood discriminator. The edge detector simply

applies a threshold to the difference between the gray levels at pairs of

pixels separated by distance d. Here the value of d is the same as that used

by the log-likelihood discriminator (3 pixels) vhile the lowpass filter is

the Wiener filter designed under the assumption of moderate interference.

Additional details can be found in [29].

t
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Figure 1

Realizations of Two Random Fields Possessing
Identical Power Spectral Densities;
L, X=0.08, p=0.0;-R, X=O.16, p=0.5

Figure 2

Selected Realizations of Random Fields
Possessing Identical Edge Density;

W, Rectangular v=i, X=0.08, p=0.0,
N, Rectangular v=-, X=0.08, P=0.0,
SE, Polygonal v=i, X=0.32, p=0.0.
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.)-0.0125, P--0-9 b.) 1=0.0125, 9=0.0 A-0-0O.1,25, P=0.'

Opp-

4.) A-0.025, 0-0.9 e.) A-0.025, P=0.0 f.) A-0.025, P-0.5

g.) X=0.05, P=-0.9 b.) X~=0.05, P=0.0 i.) X~=0.05, P=0.5

Figure 4

Selected Realizations of Random Field

Generated by Poisson Partitions
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1 .) An0.0125, pw-0.9 b.) A-0.0125, P=0.0 c.) 1-0.0125, 0-0.5

d.) 1-0.025, P-0.9 e.) X-0.025, P-0.0 f.) Am0.025, P=0.5

A
A. -0.05, P-0.9 h.) A=-05, P-0.0 i.) X-0-05, P-0.5

Figure 5

Selected Realizations of Random Field

Generated by Periodic Partitions
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a) v=16 f)''2c v= 3

g) v=6 4 ~ h) v~=128 I) v=-

Figure 6

Selected Realizations of Random Field Generated

by Stationary Renewal Point Process Possessing
Gamma Distributed Interarrival Distribution and

with X=0.05 and p=0.0
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Figure 7

Parameterization of Directed Line Segment
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Figure 8

Selected Realizations of Random Field

Generated by Polyironal Partitions
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- Figure 94

Autocorrelation Function and Power Spectral Density

of 2-) Fardo ?leckerboard Process Generated by

Periodic Partitions
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d.) XelIj U a.C. . A _ *

g.) A ~1'8O =O)h.) XA I1uII=8.O, 0=0.0 . ileo =j

Figure 10

Selected Joint Probability Density Functions

for Rectangular Partition Process, v=l
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a.) Huh =0. p=-0.9 e C. .) jujl=2.5.0, .5e -e~ =" =- e

q.) ul, 8.0. -G.9 h.) A.Hu!I=8.0. p=0.0 1.) !11=8.0. co.5

Figure 11

Intensity Plots of Logarithm of' Selected

Joint Porbability Density Functions

for Rectangular Partition Process, v=1
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a.) xeIMuIIO.5. 0-0.9 b.) AeiIUII-0.5. p-0.0 C.) AefIM1I0-5 P-0.5
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Figure 13

Intensity Plots of Logarithm of Selected Joint

Probability Density Functions for Polygonal

Partition Process
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Figure 16

- Point Spread Function of Composite Filter
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Illustration of Typical Power Spectral Densities

And Associated Wiener Filter Response
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a.) Desired Response for b.) Actual Response for
Weak Inter'ference Weak Interference

c.) Desired Response for d.) Actual Response for
Moderate Interference Moderate Interference

e.) Desired Resporse for f.) Actual Response for
Strong Tnterf,'rence Strong Interference

Figure 18

Frequency Pesponses of Desired and Actual Filters
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a.) Original; NW, p =0.0, b.) Log - Likelihood Discri -

c.) Correlation Discriminator d.) Correlation /Edge
Discriminator

Figure 19

Illustration of Texture Discrimination Results
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a.,) Original b. ) Weak Interference

c.) Moderate interference d.) Strong Interference

* Figure 20

Performance of Log-Likelihood Texture Discriminator

for Various Assumed Interference Levels
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